
Los Alamos National Laboratory Associate Directorate for Theory, Simulation, and Computation (ADTSC) LA-UR 13-2083974

Making Memory Swapping Practicable: Synergistic Coupling of SSD and
Hard Disk for QoS-Aware Virtual Memory
Kei Davis, CCS-7;
Song Jiang, Wayne State
University;
Xuechen Zhang, Georgia
Institute of Technology;
Ke Liu, Wayne State
University

Hard disk space has long been used to provide a virtual extension of main memory in order to allow
computer programs with memory requirements that are greater than the available main memory to
run. For large parallel machines, however, this mechanism is often not made available because of the
excessive performance penalty—disk access is orders of magnitude slower than main memory. The
relatively recent advent of the flash-memory-based solid-state drive (SSD), with access time several
times faster than disk, would seem to be a technological improvement for this purpose. However,
because SSD has sharply limited write endurance, a virtual memory extension based on SSD could
quickly become unreliable. We have developed a quality of service (QoS)-aware system [1] that uses
SSD and disk in tandem, exploiting the relative strengths of each and which provides a virtual memory
extension that can be as fast or faster than SSD alone while minimizing the number of writes to SSD.

When a computer program’s memory requirement, which typically
grows during program execution, exceeds available memory, there

are two possible outcomes depending on how the system is configured.
The operating system on typical desktop computers or small servers
transfers the least-recently-used pages of the memory image to hard disk
to free up memory space, and transfers them back into memory (at the
expense of moving other pages out) if they are later needed. This process
is known as swapping, and the effective increase of available memory is
known as a virtual memory extension. This is a cost-effective solution
in the sense that the cost and energy consumption of disk, per unit of
capacity, is orders of magnitude less than main memory (DRAM).

The price for this nearly free extra memory is performance—disk
access, both in terms of latency (waiting time until transfer starts) and
bandwidth (rate of data transfer once underway) is orders of magnitude
slower than DRAM. In some scenarios this is acceptable–better
that the program run slowly than quit running altogether. For large-
scale scientific computing, however, this may not be acceptable—the
computing platforms are expensive to purchase and to operate and
maximizing their throughput is an economic imperative. As such, a
swapping mechanism in the operating system is typically not available.

The relatively recent advent of the flash-memory-based solid-state drive
(SSD), with much greater performance than disk for random and small
accesses, suggests that by using SSD rather than disk the use of virtual
memory extension would be acceptable and useful in more scenarios than
it is currently. There are two problems with this simplistic approach.
The first is that while SSD is much less expensive than DRAM in terms
of capacity, it is more expensive than disk. The second is that SSD

has a strictly limited life expectancy in terms of the number of write
operations it can endure and, to make matters worse, the technological
trend is towards greater capacity and lower cost at the expense of write
endurance.

Our idea was to consider the relative strengths and weaknesses of disk
and SSD, and to develop an algorithm that would distribute the load over
an SSD-disk pair that would exploit their relative strengths to provide a
virtual memory extension that is highly performant, cost effective, and
with life expectancy comparable to disk.

Table 1. Relative characteristics of DRAM, SSD, and disk.

DRAM SSD DISK

Power/GB high low med

Cost/GB high med low

Random/short
access performance

high med low

Sequential access
performance

high med med

Write endurance unlimited limited unlimited

Table 1 compares the relevant characteristics of DRAM, SSD, and disk.
With respect to power with other considerations aside, disk is a more
efficient storage medium than DRAM, and SSD even more so. Regarding
cost per unit of capacity, disk is less expensive than SSD, suggesting
that the greater part of the memory extension would best reside on
disk. SSD is much faster than disk for random (non-sequential) and

INFORMATION
SCIENCE AND
TECHNOLOGY

www.lanl.gov/orgs/adtsc/publications.php 75

bounds on the swapping penalty (within the capacity of
the swapping system) may be specified for individual
applications by effectively prioritizing their use of SSD.

Here we show a sample of results with HybridSwap at its
default settings, chosen to yield application performance on
par or slightly better than using SSD alone. Table 2 shows
that HybridSwap reduces SSD writes by 16% to 40% for
disparate benchmarks, and with run time reductions ranging
from -0.8% to 7.1%.

Table 2. Reduction in writes to SSD when running multiple
competing instances of the Memcached (Memc), ImageMagick
(Image), Matrix Inverse (Matrix), and Correlation Computation
(CC) benchmarks.

Memc Image CC Matrix

Write
reduction

37% 40% 22% 16%

Performance
improvement -0.8% 4.6% 7.1% 0.5%

short accesses–this is because a non-sequential access will
typically require a disk head movement and then wait for
the data location on the spinning disk to appear under the
disk head, requiring several milliseconds, before data starts
to be read. The corresponding latency for SSD is tens of
microseconds.

Where disk performance is more comparable to SSD is for
long sequential accesses. Here the disk head can read or
write data continuously as the disk spins underneath it,
requiring only a short movement to the next concentric
track after spanning the current one. In this scenario using
disk instead of SSD is preferable for two reasons—cost/
capacity (long reads or writes) and longevity (for writes).

The first step was to investigate whether representative
memory-intensive applications generate memory-page
access patterns that would warrant the use of disk
to significantly reduce SSD writes without significant
performance loss compared to SSD-only swapping. An
important observation is that a sequence of page accesses
need not be strictly sequential to be cast as a sequential
access to disk. For example, if a sequence of accesses
covers (possibly with small gaps) a contiguous span of
memory pages it may directly cast as sequential if the
pattern is detected the first time and is repeated. Extending
this further, if any sequence of memory accesses is
repeated it may be translated to a sequential access to disk.
Instrumentation of representative applications shows that
such patterns are common.

Based on these ideas and observations we developed a
system in the Linux kernel, HybridSwap, and conducted
an extensive performance evaluation using representative
benchmarks. The behavior of HybridSwap is dynamically
tunable–greater or lesser performance can be obtained
by biasing traffic toward or away from the SSD, but with
correspondingly greater or lesser write access to the SSD.
There are two immediate consequences, the more obvious
being that wear on the SSD can be controlled. The second is
that we can provide quality-of-service functionality whereby

For more information contact Kei Davis at
kei@lanl.gov.

[1] Zhang, X. et al., “Synergistic
Coupling of SSD and Hard
Disk for QoS-aware Virtual
Memory,” IEEE International
Symposium on Performance
Analysis Systems and Software
(ISPASS) (2013).

Funding Acknowledgments
DOE, NNSA, Advanced Simulation and Computing Program

